

PII: S0960-894X(96)00500-8

## MACROCYCLIC TRIAMINES AS LINKERS IN TWO-ARMED RECEPTORS FOR PEPTIDES

Edward James Iorio and W. Clark Still\*

Department of Chemistry, Columbia University, New York NY 10027 USA

Abstract: Commercially available triazamacrocycles have been substituted with trimesic acid/1,2-diamine cyclooligomers to create a new class of sequence-selective receptors for peptides. Screening of these compounds against a 3375-member library of N-acetyl tripeptides revealed novel peptide-binding properties. Copyright © 1996 Elsevier Science Ltd

Significant progress has been made recently in the design and preparation of sequence-selective synthetic receptors for peptidic substrates. Some such receptors have the complex, cage-like structures that characterize typical host molecules, but a different and particularly simple structural motif has also emerged as frequently having sequence-selective peptide-binding properties. We describe one subset of such molecules as "two-armed receptors" and its general structure diagrammed below. In this structure, the linker is typically a conformationally restricted moiety that covalently links and directs two functionalized, substrate-binding arms toward one another to form a binding cleft. The arms are typically oligomeric structures that carry functionality appropriate for binding desired substrates. In our experience, the best arms are conformationally restricted in some way (e.g. macrocyclic)<sup>2</sup> though flexible (e.g. linear)<sup>3</sup> oligomers can also be used. By varying linkers and arms combinatorially, two-armed receptor libraries can be readily prepared. Sa,d,e

One of the first conformationally restricted two-armed receptors we studied is 1.<sup>2a</sup> Here a dye-substituted pyrrolidine diamine functions as linker and AB<sub>2</sub>A' macrocycles represent the arms. By screening this receptor using a combinatorial library of tripeptide substrates, it was found that 1 had a strong preference for binding only two of the 3375 different tripeptide sequences in the library: (D)Pro-(L)Val-(D)Gln and (L)Lys-(L)Val-(D)Pro. Since then we have prepared many derivatives of 1 in which the AB<sub>2</sub>A' macrocyclic arms were varied in an attempt to change its sequence selectivity. However, unless substantially different arms were used, the corresponding receptors retained a high preference for (L)Val-containing peptides.

In this communication, we describe new two-armed receptors (2 and 3) having the diaminopyrrolidine linker of 1 replaced by commercially available macrocyclic triamines. As we will show, these receptors are also highly sequence-selective binders of peptides and the consensus sequences they preferentially bind no longer contains Val.

Synthesis of both receptors was straightforward and is outlined below for 3. Thus 1,5,9-triazacyclododecane was first diprotected and then coupled to the azo dye Disperse Red 1 using its succinate pentafluorophenyl ester.<sup>2a</sup> Deprotection with trifluoroacetic acid and diacylation with pentafluorophenyl-activated AB<sub>2</sub>A' gave 3 in an the overall yield of 33%. Receptor 2 was made in an analogous fashion in 52% overall yield from di-Boc 1,4,7-triazacyclononane.<sup>4</sup>

The new receptors were first screened as described previously for binding against an encoded library of 3375 (15<sup>3</sup>) sidechain-protected tripeptides of the form Ac-AA3-AA2-AA1-NH(CH<sub>2</sub>)<sub>5</sub>CONH-polystyrene.<sup>5</sup> Roughly four copies of the tripeptide library (~1.5 mg of beads) were equilibrated for three days with a dilute chloroform solution of 2 or 3. After this time, <1% of the beads had acquired the red color of the dye indicating binding of the peptide on the bead to the receptor. In these assays, receptor 3 displayed higher peptide-binding selectivity with only 1 out of every ~3000 beads strongly binding the dyelabeled receptor. In contrast, receptor 2 associated strongly with 1 out of every ~1000 members of the library. The equilibrium concentrations of receptors 2 and 3 in these assays were 14  $\mu$ M and 26  $\mu$ M, respectively, which corresponded to binding constants on the order of 10<sup>4</sup>. The red beads were picked and decoded by electron capture gas chromatography.<sup>6</sup> Tables 1 and 2 give the sequences (N $\rightarrow$ C) of the

peptides that were most tightly bound (the frequencies give the percentage of the red beads picked that had the indicated sequence).

**Table 1.** Sidechain-protected peptide sequences selectively bound by 2 (14  $\mu$ M).

| <u>AA3</u>       | <u>AA2</u>       | <u>AA1</u>                       | Frequency Found |
|------------------|------------------|----------------------------------|-----------------|
| (L)Asn(N-trityl) | (L)Pro           | (D)Val, (D)Ala, (D)Gln(N-trityl) | 38%             |
| (D)Gln(N-trityl) | (D)Gln(N-trityl) | (D)Val, (L)Asn(N-trityl)         | 38%             |
| (L)Gln(N-trityl) | (D)Gln(N-trityl) | (D)Gln(N-trityl)                 | 23%             |

Table 2. Sidechain-protected peptide sequences selectively bound by 3 (26 μM).

| AA3              | <u>AA2</u>       | <u>AA1</u>       | Frequency Found |
|------------------|------------------|------------------|-----------------|
| (L)Gln(N-trityl) | (D)Gln(N-trityl) | (D)Gln(N-trityl) | 100%            |

These results indicate that the new receptors 2 and, especially, 3 have significant sequence-selective peptide binding properties that differ considerably from the consensus selectivity found with 1 for (L)Valcontaining peptides. While both 2 and 3 show a strong preference for various N-trityl-carboxyamide-substituted peptides (Asn and Gln), 3 binds a single sequence - (L)Gln(N-trityl)-(D)Gln(N-trityl) - under the conditions of our assay. Interestingly, the (L)Asn-(L)Pro-(D)Gln sequence found with 2 has been previously observed to bind, inter alia, a rather unselective analog of 1 having acyclic diamine as a linker.<sup>2a</sup>

Receptors 2 and 3 also bind sidechain-deprotected peptides sequence-selectively as shown below.

Table 3. Deprotected peptide sequences selectively bound by 2.

| <u>AA3</u>                      | <u>AA2</u>  | <u>AA1</u> | Frequency Found |
|---------------------------------|-------------|------------|-----------------|
| Basic CHCl <sub>3</sub> (134 μ  | M):         |            |                 |
| (L)Ala                          | (L)Pro      | (L)Lys     | 40%             |
| (L)Lys                          | (D)Ser      | (D)Pro     | 30%             |
| Acidic CHCl <sub>3</sub> (210 µ | <i>IM):</i> |            |                 |
| X                               | (L)Pro      | (L)Lys     | 50%             |
| (L)Ala                          | (L)Pro      | (L)Lys     | 21%             |
| (L)Lys                          | X           | (D)Pro     | 36%             |

**Table 4.** Deprotected peptide sequences selectively bound by 3.

| <u>AA3</u>                       | <u>AA2</u> | <u>AA1</u> | Frequency Found |
|----------------------------------|------------|------------|-----------------|
| Basic CHCl <sub>3</sub> (77 μM)  | ) <i>:</i> |            |                 |
| (L)Pro                           | (D)Ala     | (L)Ser     | 33%             |
| (D)Pro                           | (L)Lys     | (D)Ser     | 22%             |
| Acidic CHCl <sub>3</sub> (220 μ. | M):        |            |                 |
| X                                | (L)Pro     | (L)Lys     | 36%             |
| (L)Ala                           | (L)Pro     | (L)Lys     | 14%             |
| (L)Lys                           | (L)Ala     | (L)Pro     | 29%             |

To clarify the protonation state of the Lys-containing members in the peptide library used in screening, we carried out assays both under acidic (containing 1% HOAc) and basic (containing 1% Et<sub>3</sub>N) conditions. As indicated in the tables, binding strength was diminished approximately ten-fold and the preference for binding peptides containing Asn and Gln found with the protected library was lost; however, other sequences were selectively bound instead. Most of these sequences included one (L)Lys that was commonly associated with the dipeptide sequence (L)Pro-(L)Lys. In many instances, this dipeptide was part of the tripeptide sequence (L)Ala-(L)Pro-(L)Lys. With 3, the same sequence was bound in acid along with the isomeric sequence (L)Lys-(L)Ala-(L)Pro that corresponds to an approximate frame shift. A similar approximate frame shift relationship is found under basic conditions where 2 and 3 bind (L)Lys-(D)Ser-(D)Pro and (D)Pro-(L)Lys-(D)Ser respectively. Thus 2 and 3 show selective binding at both the di- and tripeptide levels for similar, but not identical, peptide sequences.

These results indicate that macrocyclic polyamines can provide viable linkers for use in the construction of two-armed receptors for peptides. The two receptors (2, 3) made here from 1,5,9-triazacyclododecane and 1,4,7-triazacyclononane showed binding selectivities that were closely related to one another but that differed substantially those from their pyrrolidine-linked cousins (e.g. 1). These results suggest triazamacrocycle-linked, two-armed receptors should be valuable components of receptor libraries and further imply that commercially available tetraaza-macrocycles (e.g. cyclen) might be useful precursors of analogous three-armed receptors.

Acknowledgement. This work was supported by NSF grant CHE95 44253.

## References and Notes:

- 1. Review: Still, W.C. Accnts. Chem. Res. 1996, 29, 155. See also: Maletic, M.; Wennemers, H.; McDonald, D.Q.; Breslow, R.C.; Still, W.C. Angew. Chem. Int. Ed. Engl. 1996, 35, 1490.
- 2. a) Wennemers, H.; Yoon, S.S.; Still, W.C. J. Org. Chem. 1995, 60, 1108; b) Shao, Y.; Still, W.C. J. Org. Chem. 1996, 61, 6086.
- 3. a) Boyce, R.; Li, G.; Nestler, H.P.; Suenega, T.; Still, W.C. J. Am. Chem. Soc. 1994, 116, 7955; b) LaBrenz, S.R.; Kelly, J.W. J. Am. Chem. Soc. 1995, 117, 1655; c) Gennari, C.; Nestler, H.P.; Salom, B.; Still, W.C. Angew. Chem. Intl. Ed. Engl. 1995, 34, 1765; d) Burger, M.T.; Still, W.C. J. Org. Chem. 1995, 60, 7382; e) Cheng, Y.; Suenaga, T.; Still, W.C. J. Am. Chem. Soc. 1996, 118, 1813.
- 4. Kovacs, Z.; Sherry, A.D. Tetrahedron Lett. 1995, 36, 9269.
- 5. This solid phase assay has been described previously: Yoon, S.S.; Still, W.C. *Tetrahedron* **1994**, *51*, 567. AAn = Gly, (D and L) Ala, Val, Pro, Ser(O-tBu), Asn(N-trityl), Gln(N-trityl), Lys(N-Boc).
- 6. Ohlmeyer, M.H.J.; Swanson, R.N.; Dillard, L.W.; Reader, J.C.; Asouline, G.; Kobayashi, R.; Wigler, M.; Still, W.C. *Proc. Natl. Acad. Sci. USA* **1993**, *90*, 10922.
- 7. For technical reasons, the deprotected tripeptide library was not N-acetylated but instead was N-acylated with a variety of simple organic acylating agents (listed in ref 5). In our binding assays here, virtually no selectivity for the N-acyl group was observed.